School of Earth System Science
Professor
Hydrological Remote Sensing
dongjianzhi@tju.edu.cn
92 Weijin Road, Bldg 16, Room 304, Nankai District, Tianjin University
300072
董建志,教授,国家级“四青人才”,《Water Resources Research》期刊副主编,毕业于荷兰代尔夫特理工大学(Delft University of Technology),先后在美国农业部水文遥感实验室(USDA-ARS-HRSL)以及美国麻省理工学院(MIT)从事大尺度的陆面水文过程的遥感观测、模拟与同化研究,主持基金委优秀青年基金(海外)、原创探索计划、科技部重点研发计划(青年科学家)等多个国家级项目,在 Nature Communications, Geophysical Research Letters, Remote Sensing of Environment 及 Water Resources Research 等一区期刊发表论文70余篇,成果被美国宇航局(NASA)专题报道。
课题组主要关注全球变化下的水文响应与反馈过程,研究方向包括:
1)大尺度(流域、全国以及全球)水文信息的获取、不确定性分析与优化融合;
2)大尺度陆面水文过程的模拟与同化;
3)全球变化下的水文响应与陆气耦合过程。
开发出新一代降水数据优化融合框架 Statistical Uncertainty analysis-based Precipitation mERging framework (SUPER)。
(参考文献:https://www.sciencedirect.com/science/article/abs/pii/S0034425722004059)
数据下载链接:www.ctrehr.com
近期主持的主要项目:
(1)基于物理-AI混合模型的双层优化端到端陆面数据同化方法研究(42450248),135万元,国家自然科学基金委员会(原创探索计划),项目主持人,2025-2027
(2)基于多源数据融合与深度学习的全球陆-气耦合同化技术研究(2024YFF0810600),300万元,国家自然科学基金委员会(国家重点研发计划),项目负责人,2024-2029
(3)基于数理不确定性分析的多源降水数据融合方法研究(52179021),58万元,国家自然科学基金(面上基金项目),项目负责人,2022 - 2025
欢迎感兴趣的研究生和本科生加入团队,团队拟招聘助理研究员/博士后1-2名,同时欢迎客座学生和老师来访问、交流。
- Doctoral degree| Delft University of Technology| Hydrology and Water Resources| 2016
- Master’s Degree| Beijing Normal University| geography| 2012
- Bachelor’s Degree| Sun Yat-sen University| geography| 2009
- Land surface modeling and data assimilation
- Land-atmosphere coupling
- Hydrological Remote Sensing
-
2022.5-Now
School of Earth System Science,Tianjin University, China | Professor  -
2021.6-2022.4
Department of Civil and Environmental Engineering | Massachusetts Institute of Technology, USA  -
2017.4-2021.5
Hydrology and Remote Sensing Laboratory | United States Department of Agriculture, USA 
- Papers
- [1] Xin Tian, Jianzhi Dong, Xi Chen, Jianhong Zhou, Man Gao, Lingna Wei, Xiaoqi Kang et al. County-level evaluation of large-scale gridded data sets of irrigated area over China, J. Geophys. Res. Atmos., 2024, e2023JD040333.
- [2] Xiaoqi Kang, Jianzhi Dong, Wade T. Crow, Lingna Wei, and Huiwen Zhang. The conditional bias of extreme precipitation in multi-source merged data sets, GRL, 2024, e2024GL111378.
-
- [3] Jianzhi Dong, J., Xi Chen, Y. Li, M. Gao, L. Wei, N. Tangdamrongsu, and W. Crow. Inter-Basin Water Transfer Effectively Compensates for Regional Unsustainable Water Use, WRR, 2023, e2023WR035129.
- [4] Xin Tian, Jianzhi Dong, S. Jin, Hai He, Hao Yin, and Xi Chen. Climate change impacts on regional agricultural irrigation water use in semi-arid environments, Ag.Wat. Man., 2023, e2022WR032472. 2
- [5] Jianzhi Dong, Ruzbeh Akbar, Andrew F. Feldman, Daniel Short Gianotti, and Dara Entekhabi. Land surfaces at the tipping-point for water and energy balance coupling, WRR, 2023, e2023WR035129.
- [6] Jianzhi Dong, W. Crow, Xi Chen, N. Tangdamrongsub, M. Gao, S. Sun, J. Qiu, L. Wei, H. Gao, and Z. Duan. Statistical uncertainty analysis-based precipitation merging (SUPER): A new framework for improved global precipitation estimation, RSE, 2022, 113299.
- [7] Wade T. Crow, Jianzhi Dong, and Rolf H. Reichle. Leveraging pre‐storm soil moisture estimates for enhanced land surface model calibration in ungauged hydrologic basins, WRR., 2022, 58(8): e2021WR031565.
- [8] Jianzhi Dong, Ruzbeh Akbar, Daniel J. Short Gianotti, Andrew F. Feldman, Wade T. Crow, and Dara Entekhabi. Can surface soil moisture information identify evapotranspiration regime transitions?, GRL, 2022, e2021GL097697.
- [9] Jianzhi Dong, Fangni Lei, and Wade T. Crow. Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States, Nat. Commun., 2022, 13, 336.
- [10] Jianzhi Dong, Paul A. Dirmeyer, Fangni Lei, Martha C. Anderson, Thomas RH Holmes, Christopher Hain, and Wade T. Crow. Soil evaporation stress determines soil moisture-evapotranspiration coupling strength in land surface modeling, GRL, 2020, e2020GL090391.
- [11] Jianzhi Dong, Wade T. Crow, and Rolf Reichle, Thomas RH Holmes, Christopher Hain, and Wade T. Crow. Improving rain/no-rain detection skill by merging precipitation estimates from different sources, JHM, 2020, 21, 2419-2429.
- [12] Jianzhi Dong, Wade T. Crow, Kenneth J. Tobin, Michael H. Cosh, David D. Bosch, Patrick J. Starks, Mark Seyfried, and Chandra Holifield Collins. Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation, RSE, 2020, 242, 111756.
- [13] Jianzhi Dong, Lingna Wei, Xi Chen, Zheng Duan, and Yang Lu. An instrument variable based algorithm for estimating cross-correlated hydrological remote sensing errors, J. Hydro., 2020, 124413.3
- [14] Jianzhi Dong, Wade Crow, Rolf Reichle, Qing Liu, Fangni Lei, and Michael H. Cosh. A global assessment of added value in the SMAP Level 4 soil moisture product relative to its baseline land surface model, GRL, 2019, 6604-6613.
- [15] Jianzhi Dong, Wade Crow, Zheng Duan, Lingna Wei, and Yang Lu. A double instrumental variable algorithm for geophysical product error estimation, RSE, 2019, 225, 217–228.
- [16] Jianzhi Dong, Wade Crow. L-band remote sensing increases sampled levels of global soil moisture–air temperature coupling strength, RSE, 2019, 220, 51–58.
- [17] Jianzhi Dong, Wade Crow. Use of satellite soil moisture to diagnose climate model representations of European soil moisture–air temperature coupling strength, GRL, 2018, 45, 884–891.
- [18] Jianzhi Dong, Wade Crow. The added value of assimilating remotely sensed soil moisture for estimating summertime soil moisture–air temperature coupling strength, WRR, 2018, 54, 6072–6084.
- [19] Jianzhi Dong, Wade Crow, and Rajat Bindlish. The error structure of the SMAP single and dual channel soil moisture retrievals, GRL, 2018, 45, 758–765.
- [20] Jianzhi Dong, Wade Crow. An improved triple collocation algorithm for decomposing autocorrelated and random observation errors, J. Geophys. Res. Atmos., 2017, 122(13), 081–13,094.
- [21] Jianzhi Dong, Rosa Agliata, Susan C. Steele-Dunne, Olivier Hoes, Thom Bogaard, and Nick van de Giesen. Impacts of heating strategies on soil moisture estimation using actively heated fiber optic cables, Sensors, 2017, 17(9).
- [22] Jianzhi Dong, Susan C. Steele-Dunne, Tyson E. Ochsner, Christine Hatch, John Selker, Scott Tyler, Michael H. Cosh, and Nick van de Giesen. Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother, WRR, 2016, 52, 7690–7710.
- [23] Jianzhi Dong, Susan C. Steele-Dunne, Tyson E. Ochsner, and Nick van de Giesen. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures, WRR, 2016, 52, 4280–4300.
- [24] Jianzhi Dong, Susan C. Steele-Dunne, Tyson E. Ochsner, and Nick van de Giesen. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother, Adv. Water Resour., 2016, 91, 104–116. 4
- [25] Jianzhi Dong, Susan C. Steele-Dunne, Tyson E. Ochsner, and Nick van de Giesen. Determining soil moisture by assimilating soil temperature measurements using the ensemble Kalman filter, Adv. Water Resour., 2015, 86, 340–353.
- [26] Jianzhi Dong, Susan C. Steele-Dunne, Jasmeet Judge, and Nick van de Giesen. A particle batch smoother for soil moisture estimation using soil temperature observations, Adv. Water Resour., 2015, 83, 111–122.