Li Kun
School
College of Intelligence and Computing
Professional Title
Professor
Administrative Appointments
Professor
Discipline
计算机科学与技术
Contact Information
lik@tju.edu.cn
Brief Introduction
李坤,天津大学英才教授、博士生导师、国家优秀青年基金与天津市杰出青年基金获得者。主要研究方向为三维视觉,尤其是以人为中心的智能重建与分析。以一作/通作在IEEE TIP/TVCG/CVPR/NIPS等知名国际期刊/会议发表论文56篇,获ICME'17最佳论文奖(获奖率0.8%)。相关技术实现了产业化应用。担任天津市人工智能学会副秘书长和理事、SCI一区期刊CAAI TRIT的编委、ACM MM 2021大会领域主席、VALSE 2022大会本地主席等职务。更多信息请参见个人主页:http://cic.tju.edu.cn/faculty/likun/index.html
Education Background
- Ph.D.| Tsinghua University| Control Science and Engineering| 2011
- B.E.| Beijing University of Posts and Telecommunications| Communication engineering| 2006
Research Interests
- Image/video processing
- Artificial Intelligence
- Computer graphics
- Computer vison
Courses
Positions & Employments
-
2014.10-2015.10
 EPFL | Postdoctoral  -
2011.7-2014.6
 Tianjin university | Assistant professor 
Academic Achievements
- Papers
- [1] Kun Li, Jingyu Yang, Leijie Liu, Ronan Boulic, Yukun Lai, Yebin Liu, Yubin Li, and Eray Molla, “SPA: Sparse Photorealistic Animation Using a Single RGB-D Camera”, IEEE Transactions on Circuits and System for Video Technology (Special Issue on Augmented Video), vol 27, no. 4, pp. 771-783, 2017.
- [2] Kun Li, Yanming Zhu, Jianmin Jiang and Jingyu Yang, “Video Super-resolution Using an Adaptived Superpixel-guided Auto-Regeressive Model”, Pattern Recognition, vol. 51, no. 3, pp. 59-71, 2016.
-
- [3] Kun Li, Jingyu Yang and Jianmin Jiang, “Nonrigid structure from motion via sparse representation”, IEEE Trans. Cybernetics, vol. 45, no. 8, pp. 1401-1413, 2015.
- [4] Jingyu Yang, Ke Li, Kun Li, Yukun Lai, “Sparse Non-rigid Registration of 3D Shapes”, Computer Graphics Forum, vol. 34, no. 5, pp. 89-99, 2015.
- [5] Jingyu Yang, Ziqiao Gan, Kun Li, Chunping Hou, “Graph-based Segmentation for RGB-D Data Using 3-D Geometry Enhanced Superpixels”, IEEE Trans. Cybernetics, vol. 45, no. 5, pp. 913-926, 2015.
- [6] Xinchen Ye, Jingyu Yang, Xin Sun, and Kun Li. Foreground-Background Separation From Video Clips via Motion-Assisted Matrix Restoration. IEEE Trans. Circuits and Systems for Video Technology, vol. 25, no. 11, pp. 1721-1734, 2015.
- [7] Jingyu Yang, Xinchen Ye, Kun Li, Chunping Hou, Yao Wang, “Color-guided Depth Recovery from RGB-D Data Using an Adaptive Auto-regressive Model”, IEEE Trans. Image Processing, vol. 23, no. 8, pp. 3443-3458, 2014.
- [8] Yanming Zhu, Kun Li, and Jianmin Jiang, “Video Super-Resolution Based on Automatic Key-Frame Selection and Feature-Guided Variational Optical Flow”, Signal Processing: Image Communication, 29(8), 875-886, 2014.
- [9] Kun Li, Qionghai Dai, Wenli Xu, et al., “Temporal-dense dynamic 3D reconstruction with low frame rate cameras”, IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 5, pp. 447-459, 2012.
- [10] Kun Li, Qionghai Dai, Wenli Xu, Jingyu Yang and Jianmin Jiang, “Three-Dimensional motion estimation via matrix completion”, IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 2, pp. 539-551, 2012.
- [11] Kun Li, Qionghai Dai and Wenli Xu, “Markless shape and motion capture from video sequences”, IEEE Trans. Circuits and System for Video Technology, vol. 21, no. 3, pp. 320-334, 2011.
- [12] Kun Li, Qionghai Dai and Wenli Xu, “Collaborative color calibration for multi-camera systems”, Signal Processing: Image Communication, vol. 26, no. 1, pp. 48-60, 2011.
- Patents
- [1] 基于小波变换的单相机视频三维重建方法
- [2] 时空联合多视角视频插值及三维建模方法
-
- [3] 基于特征导向变分光流的视频超分辨率方法
- [4] 采用环形低帧摄像机阵列对高速运动物体建模的方法
- [5] 一种环形摄像机阵列校准系统及其方法
- [6] 一种对多台摄像机进行全局颜色校准的方法
- [7] 三维模型的捕捉及重建方法和系统
- [8] 基于自适应的超像素导向自回归模型的视频超分辨率方法
- [9] 基于运动信息和矩阵填充的视频背景恢复方法
- [10] 基于飞行时间TOF相机的深度计算成像方法
- [11] 基于散斑结构光深度相机的多视点计算成像方法
- [12] 采用自回归模型对深度图进行超分辨率重建的方法
- [13] 基于感兴趣深度的立体图像压缩方法
- [14] 基于稀疏表示理论的超分辨率图像获取方法
- [15] 基于稀疏表示的非刚性表面对齐方法
- [16] 基于加权双稀疏约束的非刚性表面配准方法
- [17] 可变形物体的全局非刚性配准与重建
- [18] 基于图论的低秩矩阵恢复三维骨架方法
- [19] 基于体感相机Kinect v2.0的真实感动画生成方法
- [20] 基于Kinect深度相机的人体分割方法
- [21] 一种雾霾环境下的深度计算方法
- [22] 基于图像的雾霾PM2.5值估计方法
- [23] 基于L1范数约束的RGB-D图像本征分解方法
- [24] 基于低秩矩阵分析的三维骨架修复方法
- [25] 基于低秩矩阵重建和稀疏表示的行列缺失图像填充方法
Team
Vision, Graphics and Animation (VGA)